Exam 2: What would have been... The following is a take home practice exam. When you are ready, set a timer for 1 hour and 15 minutes. You can check you answers against the answer key. Answers will be ranked as easy (*), medium (**), and hard (***). Have fun! 1. Show the curved arrows illustrating the following reactions. Make sure to show all bond breaking and bond forming events (10 points).* a. $$\frac{Br}{Br}$$ $\frac{Br}{Br}$ \frac **2.** When 3-hexene is treated to Br₂ followed by NaNH₂, an alkene is formed. However, when cyclohexene is treated to the same conditions, a cyclohexadiene is formed. Explain this difference? (9 points)** 3. Show the products or reagents for the following reactions. Make sure to address stereochemistry when appropriate. (4 points each, 24 points). ** a. $$\frac{H_2SO_4}{H2O}$$ c. $$\longrightarrow$$ OH $\xrightarrow{\text{CrO}_3, \text{H}_2\text{SO}_4}$ \longrightarrow O e. Na/NH₃ $$H_3$$ H_3 f. $$\frac{Br_2}{Br}$$ **5.** A *trans* double bond can be converted to a *cis* double bond by treatment of a peroxyacid followed by treatment with triphenylphosphine. Explain the stereochemical outcome of this process, using mechanisms throughout the second step (10 points)*** H3C, PPh3 **4.** Show the mechanisms of the following reactions, using curved arrows to illustrate your reactions. (16 points, 8 points each)** **6.** The following syntheses can be carried out in 3 or fewer steps. Show a synthesis. (If you use more then 3 steps, it is ok). (7 points each, 21 points)** a. $$P_{13}P = cH_2$$ $P_{13}P = cH_2$ $P_{13}P = cH_2$ $P_{20}P = cH_2$ $P_{3}P = cH_2$ $P_{4}P = cH_2$ $P_{4}P = cH_2$ $P_{4}P = cH_2$ 7. Show a synthesis of hexane using methanol (H_3COH) as your only carbon-based starting materials. (10 points)*** $$H_3COH$$ $\xrightarrow{PBr_3}$ H_3C-Br $\xrightarrow{PPh_3}$ H_3C-PPh_3 H_3COH \xrightarrow{PCC} H $\xrightarrow{PC$ One option. Many, many others